

## Technical Specifications

KRD13 Series High Acceleration Shock Test System





Web: <a href="www.creditcme.com">www.creditcme.com</a>
Email: <a href="mailto:info@creditcme.com">info@creditcme.com</a>

KRD13 series high acceleration shock test system is specially designed to meet the requirements of military industry and home appliances. The system adopts the principle of pneumatic energy storage expansion. By adjusting the inflation pressure, various high-level acceleration tests can be easily implemented in a short stroke.

For the classic drop test, it's equipped with the corresponding shock amplifier to complete drop test.

- Windows-based stable control system, full-automatic remote-control interface
- Pneumatic cylinder driving with advantages of large driving force, short accelerating stroke, low cost and pollution free.
- Automatic control of lifting height with high accuracy and good repeatability
- Adopts the high strength and hardness cast aluminum table, which has high first-order resonance frequency, featured with low noise and no clutter
- The most reliable double-brake system: effectively avoids secondary rebound collisions, more securely positioning the table, and more reliably guarantees the safety of the operator.
- **Easy installation**: the device comes with a base, due to short driving stroke of the pneumatic cylinder, the footprint is small.

## **Technical Specifications**

| Model<br>Parameters                 |                       | KRD13 - 50              | KRD13 - 100 | KRD13 - 200 | KRD13 - 500 | KRD13 - 800 | KRD13 - 1000 |
|-------------------------------------|-----------------------|-------------------------|-------------|-------------|-------------|-------------|--------------|
| Rated Load (kg)                     |                       | 50                      | 100         | 200         | 500         | 800         | 1000         |
| Table size (mm)                     |                       | 300×300                 | 500×500     | 800×600     | 800×800     | 1000×800    | 1000×1000    |
| Peak<br>Acc.<br>(G)                 | Half-Sine             | 10 ~ 850                | 10 ~ 200    | 10 ~ 300    | 10 ~ 200    |             |              |
|                                     | Post-Peak<br>Sawtooth | 10 ~ 200                | 10 ~ 700    | 10 ~ 100    | 10 ~ 60     |             |              |
|                                     | Trapezoid             | \                       | 15 -        | ~ 100       |             | 15 ~ 60     |              |
| Pulse                               | Half-Sine             | 0.8 ~ 40                | 3 ~ 18      | 1.5 ~ 40    | 2 ~ 40      | 3 ~ 4       | 40           |
| Durati<br>on                        | Post-Peak<br>Sawtooth | 3 ~ 18                  | 1 ~ 40      | 3 ~ 18      |             | 6 ~ 18      |              |
| (ms)                                | Trapezoid             | 6 ~ 12                  |             |             |             |             |              |
| Bump Waveform                       |                       | Half Sine Waveform      |             |             |             |             |              |
| Shock Peak<br>Acceleration (G)      |                       | 5 ~ 150                 |             |             |             |             |              |
| Shock Pulse<br>Duration(ms)         |                       | 3 ~ 30                  |             |             |             |             |              |
| Overall Dimension                   |                       | 1000×1000               | 1100×1100   | 1100×1100   | 1100×1100   | 1400×1400   | 1500×1500    |
| (mm)                                |                       | ×1200                   | ×1500       | ×1500       | ×1500       | ×1600       | ×1600        |
| Weight (kg)                         |                       | 1000                    | 1800        | 2500        | 2800        | 3800        | 4000         |
| Max. Frequency<br>Times (Times/Min) |                       | 100                     | 80          |             | 60          | 50          | 40           |
| Power                               |                       | AC220V ±10%, 50Hz, 2kVA |             |             |             |             |              |



Web: <u>www.creditcme.com</u> Email: <u>info@creditcme.com</u>

| Power requirements<br>for<br>The Air Compressor | AC220V±10%, 50Hz, 3kVA or AC380V±10%, 50Hz, 5kVA                                                                                                                                                                                                                                  |  |  |  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Air Source<br>Conditions                        | Air source output pressure is no greater than 1.0Mpa. If there is no air source in the lab, air compressor needs to be configured; if there is air source in the lab, and there is a high requirement for shock frequency times, a corresponding air tank needs to be configured. |  |  |  |
| Working<br>Environment                          | Temperature range 0 ~ 40°C; Humidity ≤ 90% (25°C), non-condense                                                                                                                                                                                                                   |  |  |  |
| Standards                                       | MIL-STD-810F IEC68-2-27                                                                                                                                                                                                                                                           |  |  |  |